Pixel-by-Pixel Classification of MFISH Images
نویسندگان
چکیده
Multiplex Fluorescence In-Situ Hybridization (M-FISH) is a recently developed chromosome imaging method in which each chromosome is labelled with 5 fluors (dyes) and is also counterstained with DAPI. This paper proposes an automatic pixel by pixel classification algorithm for M-FISH images using a Bayes Classifier. The M-FISH pixel classification was approached as a 25 class 6 feature pattern recognition problem. The classifier was trained and tested on non-overlapping data sets and an overall classification accuracy of 95% was obtained. Keywords— M-FISH, Bayes Classifier.
منابع مشابه
Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملطبقهبندی زیرپیکسلی تصاویر ابرطیفی براساس تعمیم الگوریتم معاوضه پیکسلی و ارزیابی آن
The capability of the matter identification is developed considerably in hyperspectral images. The spectral reflectance of surfaces in these imaging systems in the visible and near infrared range of the electromagnetic spectrum is recorded in extremely narrow and continuous bands. But for some reasons, such as existence the mixed pixels and low spatial resolution of these images, is difficult t...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملAnalysis Accruing of Sentinel 2A Image’s Classification Methods Based on Object Base and Pixel Base in Flood Area Zoning of Taleqan River
Flood zonation mapping is one of the priorities for the soil and water management, which Remote Sensing (RS) capabilities are very applicable to this issue. The main objective of this research was study of accuracy of the Object oriented and Pixel based methods for flood zonation mapping in the Taleghan River basin. Therefore, the Sentinel 2A satellite image of the study area classified using s...
متن کاملComparison of Performance in Image Classification Algorithms of Satellite in Detection of Sarakhs Sandy zones
Extended abstract 1- Introduction Wind erosion as an “environmental threat” has caused serious problems in the world. Identifying and evaluating areas affected by wind erosion can be an important tool for managers and planners in the sustainable development of different areas. nowadays there are various methods in the world for zoning lands affected by wind erosion. One of the most important...
متن کامل